MVR蒸发器,是英文mechanical vapor recompression的简称。mvr是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项技术。
二次蒸汽,经过压缩机的压缩,压力和温度得以升高,热焓随之增加,被送到蒸发器的加热室当作加热蒸汽即生蒸汽使用,使料液维持蒸发状态,而加热蒸汽本 身将热量传递给物料本身冷凝成水。这样,原来要废弃的蒸汽就得到了充分的利用,回收了潜热,又提高了热效率。
早在60年代,德国和法国已经成功的将该技术应用于化工、制药、造纸、污水处理、海水淡化等行业。
其工作过程是低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中*生蒸汽。
多效蒸发过程中,蒸发器某一效的二次蒸汽不能直接作为本效热源,只能作为次效或次几效的热源。如作为本效热源必须额外给其能量,使其温度(压力)提高。蒸汽喷射泵只能压缩部分二次蒸汽,而mvr蒸发器则可压缩蒸发器中所有的二次蒸汽。
能量图
能量图
溶液在一个降膜蒸发器里,通过物料循环泵在加热管内循环。初始蒸汽用新鲜蒸汽在管外给热,将溶液加热沸腾产生二次汽,产生的二次汽由涡轮增压风机吸入,经增压后,二次汽温度提高,作为加热热源进入加热室循环蒸发。正常启动后,涡轮压缩机将二次蒸汽吸入,经增压后变为加热蒸汽,就这样源源不断进行循环蒸发。蒸发出的水分终变成冷凝水排出。
由于成本原因,单级离心压缩机和高压风机被普遍用于机械蒸汽再压缩系统。因此下述说明是针对此类设计。离心压缩机是体积控制机器,即无论吸入压力多大,体积流率几乎保持恒定。而质量流量的变化与吸入压力成比例。
单级离心压缩机的压缩循环描绘在焓熵图中。单级离心压缩机需要的动力:
例如:将来自蒸发器的饱和水蒸汽从吸入状态p1=1.9 bar, t1=119 ℃压缩到p2= 2.7 bar, t2=161℃(压缩比 Π= 1.4)。压缩循环沿着多变曲线1-2,蒸汽的比焓增加量Δhp。对于蒸汽的比焓h2,通过压缩机内效率(等熵效率)的等式:在此温度下,它进入到蒸发器的加热器。基于被吸入蒸汽的量,kg/hr。hp 单位多变(有效)压缩功,kJ/kg。hs 单位等熵压缩功,kJ/kg。
压缩机的等熵效率(内效率)除其他因素之外,单位多变压缩功 hp取决于多方指数κ和吸入气体的摩尔质量M,以及吸入温度和要求的压升。对于原动机(电动机、燃气机、涡轮机等)的实际耦合功率,考虑了更大的机械损耗余量。叶轮由标准材料制造的单级离心压缩机能够获得压缩因子1.8的水蒸汽压升,如果采用钛等更高质量的材料,压缩因子可高达2.5。这样一来,终压力p2就是吸入压力p1的1.8倍,或2.5倍,这对应于饱和蒸汽温度升高约12-18K,温升可到30K,这取决于吸入压力。就蒸发技术而言,通常的做法是根据相应的水沸点温度来表示其压力。这样,有效温差就被直接表示出来。
mvr能流图
mvr能流图
机械蒸汽再压缩的原理
蒸发设备紧凑,占地面积小、所需空间也小。又可省去冷却系统。对于需要扩建蒸发设备而供汽,供水能力不足,场地不够的现有工厂,特别是低温蒸发需要冷冻水冷凝的场合,可以收到既节省投资又取得较好的节能效果。
单程型蒸发器
这一大类蒸发器的主要特点是:溶液在蒸发器中只通过加热室一次,不作循环流动即成为浓缩液排出。溶液通过加热室时,在管壁上呈膜状流动,故习惯上又称为液膜式蒸发器。根据物料在蒸发器中流向的不同,单程型蒸发器又分以下几种。
1.升膜式蒸发器 其加热室由许多竖直长管组成。常用的加热管直径为25~50mm,管长和管径之比约为100~150。料液经预热后由蒸发器底部引入,在加热管内受热沸腾并迅速汽化,生成的蒸汽在加热管内高速上升,一般常压下操作时适宜的出口汽速为20~50m/s,减压下操作时汽速可达100至160m/s或更大些。溶液则被上升的蒸汽所带动,沿管壁成膜状上升并继续蒸发,汽、液混合物在分离器2内分离,完成液由分离器底部排出,二次蒸汽则在**部导出。须注意的是,如果从料液中蒸发的水量不多,就难以达到上述要求的汽速,即升膜式蒸发器不适用于较浓溶液的蒸发;它对粘度很大,易结晶或易结垢的物料也不适用。
2.降膜式蒸发器 降膜式蒸发器和升膜式蒸发器的区别在于,料液是从蒸发器的**部加入,在重力作用下沿管壁成膜状下降,并在此过程中蒸发增浓,在其底部得到浓缩液。由于成膜机理不同于升膜式蒸发器,故降膜式蒸发器可以蒸发浓度较高、粘度较大(例如在0.05~0.45Ns/m2范围内)、热
管式蒸发器
管式蒸发器(Tubular evaporator)是自然循环蒸发器的一种,加热蒸汽进入管间,被加热的溶液则沿加热室的列管循环。管式蒸发器主要有循环管式蒸发器、螺旋管式蒸发器、盘管式蒸发器等。
中文名 管式蒸发器 外文名 Tubular evaporator 本 质 自然循环蒸发器的 种 类 循环管式蒸发器等 特 点 结构简单,传热面积较大
目录
1 蒸发器的类型
2 循环管式蒸发器
3 盘管式蒸发器
4 蛇管式蒸发器
蒸发器的类型
蒸发器的构造、种类繁多,其原始的构造形式特别适用于制糖工业方面。蒸汽夹套式单效真空蒸发器早在1812年就用于糖液的蒸发,1829年出现了多次利用蒸汽的多效蒸发设备。
随着工业的需要和发展。蒸发器构造的形式也逐步改进。例如先以横管加热式取代了夹套加热式,再改进成为竖管加热式,而后者在广泛使用中又继续得到改进。为了避免溶液静压强的影响,创造了液膜蒸发器。为了提高生产强度,又创造了加热室在外的蒸发器和强制循环蒸发器。此外。节省加热蒸气的办法。除了将二次蒸气加以利用成为多效蒸发外,还可借二次的绝热压缩,使其温度升高而能再度用于原蒸发器,以作为加热蒸气,如此操作的蒸发器称为热泵蒸发器。这些改进和创造,都以蒸发的基本原理以及与其生产强度有关的许多因素的研究为依据。
各种不同构造的蒸发器的特征如下:
加热面形状和位置—夹套、蛇管、直管、加热室在内或在外;
蒸发器本身的放置方法—横卧、竖立、倾斜;
溶液的循环方法—自然循环、强制循环。
若按操作方法。蒸发设备也同样可以分为间歇式和连续式两类。
但不管哪一类蒸发器,都由加热室和分离室两部分组成。加热室也称沸腾室,是用饱和蒸汽间壁加热使物料沸腾的部分。实际上就是一种加热器,分离室也称蒸发室。溶液在加热室受热沸腾汽化后,产生的二次蒸气中带有大量的液滴,利用蒸发室突然增大的蒸发空间使液滴凝聚沉降而与蒸气分离